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a b s t r a c t

In this paper, an integrated hardware and software design method is developed to implement an MPC

algorithm on an FPGA chip. This makes it possible to achieve the long-desired goal of extending MPC

algorithms to field control so as to deal with constraints effectively. To expedite the numerical procedure of

solving quadratic programming (QP) in the MPC algorithm, a QP solver based on embedded chips is

designed to exploit the flexibility and efficiency of FPGA chips. With a carefully devised software

architecture, a universal platform is proposed to be facilely deployed to field control applications. To

demonstrate the efficacy, a prototype system is built based on a Xilinx FPGA chip. It is then applied to a

motor servo tracking control system and achieves satisfactory control performance.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Thanks to its intrinsic capability of handling constraints, model
predictive control (MPC) has been widely applied as an advanced
control strategy to many complex industrial processes such as
petro-refining plants (Bemporad, 2006; Ordys et al., 2001; Qin &
Badgwell, 2003). Nevertheless, because the MPC controller needs
to solve a constrained optimization problem in real time, the
resulting computational burden restricts its implementations to
those systems possessing high computing powers. It is usually
difficult to directly apply MPC algorithms to field controllers and
many other application fields equipped with only embedded
hardware devices.

The current work is focused on fully exploiting the potential of
MPC algorithms to field control. To this end, two key design factors
in the MPC implementation need to be considered, namely, the
embedded hardware device and the accordingly tailored design
scheme. Currently, there are several commercially available
embedded hardware platforms for field controllers, including
advanced RISC machine (ARM), digital signal processing (DSP),
application-specific integrated circuit (ASIC), and field programma-
ble gate array (FPGA). Among them, FPGA distinguishes itself with
salient features in both flexibility and computational efficiency.

FPGA devices have a number of programmable logic resources
that can be directly configured to perform complex computations in
ll rights reserved.
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hardware. Moreover, recent technical progresses make it possible to
integrate FPGA with microprocessors and related peripherals to
form a complete embedded system. Not only it guarantees the
performance of entire system, but also it makes the system design
more flexible and thus can significantly reduce design cycles (Kuon
& Rose, 2007). In addition, with the adroitly designed architecture
including features such as pipelining and parallel computing, FPGA
can achieve a much higher processing speed than software imple-
mentations (Tessier & Burleson, 2001). This makes FPGA particularly
attractive for computation intensive tasks.

Implementing MPC algorithm on FPGA chips has attracted wide
interests in recent years (Bleris, Vouzis, Arnold, & Kothare, 2006; He
& Ling, 2005; Ling, Yue, & Maciejowski, 2006; Monmasson & Cirstea,
2007). Monmasson and Cirstea (2007) provided an overview and
several general guidelines on developing industrial control systems
with FPGA. Bleris et al. (2006) used a co-processor to accelerate the
major part of the computations in sequential order. In Ling et al.
(2006) and He and Ling (2005), a MATLAB/Handel-C co-design
procedure for fast prototyping is developed to implement MPC on
an FPGA chip, where an interior point method is used to solve the
online optimization. Lau, Yue, Ling, and Maciejowski (2009) com-
pared the active set method with the interior point method by
implementing it on FPGA chip with Handel-C procedures, and
reflected that the active set method is more efficient for problems
with small scale.

This paper develops an integrated hardware and software
design method to implement an MPC algorithm on FPGA plat-
forms for field controls. As the scale of field control is normally
small, the active set method is adopted. To make the design more
flexible for different applications and balance the required resources,
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with the scrutinizing of the execution sequence in solving the
quadratic programming (QP) problem by active set method, a highly
modularized QP solver is designed to undertake most of the
computational tasks. This QP solver can be customized to deal with
different problem sizes so as to make full use of the logic resources
as well as parallel processing capability. Furthermore, it has the
flexibility to be readily ported to other FPGA devices.

To demonstrate the feasibility and efficacy of the proposed
design, a prototype MPC system using the Xilinx Virtex-4 FPGA
device is applied to a motor servo tracking control system and
achieves good control performance. It shows that the proposed
design approach can thus be applied to a wide range of field
control applications with various constraints.

This paper is organized as follows. Section 2 introduces the
technical backgrounds of the MPC algorithm and active set
method in the optimization theory. In Section 3, the details of
the MPC algorithm implementation on FPGA is discussed. Section
4 showcases an application of the proposed design to a motor
servo tracking control system. The conclusion and future works
are provided in Section 5.
2. Background

This section introduces the basic ideas of MPC algorithm and
active set method in the optimization theory.

2.1. MPC algorithm

MPC is an advanced control strategy that is widely applied in
many process control applications. The plant model can be
described by the following discrete linear system:

xðkþ1Þ ¼ AxðkÞþBuðkÞ, ð1Þ

where xARn is the state variable, uARl the control input,
AARn�n the system matrix, and BARn�l the input matrix. At
each sampling instant, MPC needs to solve the following optimi-
zation problem (Morari & Lee, 1999):

min
UðkÞ

J¼
1

2
xT ðkþpÞPf xðkþpÞþ

Xp�1

i ¼ 1

xT ðkþ iÞQixðkþ iÞ

þ
Xm�1

i ¼ 0

uT ðkþ iÞRiuðkþ iÞ

subject to EXðkÞþFUðkÞrb, ð2Þ

where p is the length of the prediction horizon, m the length of
the control horizon, QiARn�n the weighting matrix on state
variables, RiARl�l the weighting matrix on control inputs,
Pf ARn�n the weighting matrix on the terminal state, and

XðkÞ ¼ ½xT ðkþ1Þ, . . . ,xT ðkþpÞ�T ARpn, ð3Þ

UðkÞ ¼ ½uT ðkÞ,uT ðkþ1Þ, . . . ,uT ðkþm�1Þ�T ARlm: ð4Þ

To reduce the computational complexity of the optimization
solver, it is a common practice to adopt linear constraints on
state variables and control inputs. Incorporating the model in
Eq. (1), one can cast the optimization problem (2) into the
following standard Quadratic Programming (QP) problem:

min
UðkÞ

J¼
1

2
UT
ðkÞHUðkÞþcT ðkÞUðkÞ

subject to GUðkÞrb, ð5Þ

where HARlm�lm is a constant matrix derived from weighting
matrices Pf, Qi and Ri, cðkÞARlm is composed of the state vector
x(k), and G is a constant matrix determined by E and F. For brevity,
the detailed expressions for H, c, and G are omitted. Interested
readers may refer to Rawlings (2000). Note that the optimization
variable U(k) for (5) is defined in Eq. (4).

MPC algorithm is implemented in a receding manner, that is,
at each sampling time instant, it solves the optimization problem
(5) and then applies only the first control signal u(k) to the plant.
At the next instant, the entire procedure is repeated in the same
fashion. Depending on the size and complexity, solving the online
optimization problem may require powerful and expensive com-
puting devices, which prohibits MPC algorithms from being
applied to field control.

2.2. Active set method

There are several methods available for the optimization
algorithm design, including interior point, conjugate gradient,
and active set. Because the MPC online optimization scale for
field control is usually small, the active set method is a preferred
option since it is less computationally demanding in comparison
to other methods (Bartlett, Wächter, & Biegler, 2000).

The basic idea of active set method is to convert the inequality
constrained QP problem into a series of equality constrained QP
(ECQP) problems, and then use Lagrange method to solve these
subproblems in sequence.

To conform to the convention in the optimization community,
by an abuse of notation, x is used to denote the optimization
variable in this subsection, which corresponds to the optimization
variable U(k) in Eq. (5). Let xðlÞ be an optimal solution after the l-th
iteration. Define the active constraint index set as

IðlÞ ¼ fi9gix¼ bi
g,

where gi is the i-th row of the matrix G in (5), and bi is the i-th
element in b. Define the following ECQP subproblem:

min f ðxÞ ¼ 1
2xT HxþcT x

subject to Glx¼ bl, ð6Þ

where Gl and bl are composed of all the active constraints in Gx¼b

at the l-th iteration, and they may vary from one iteration to the
next. Chen (2005) proposes an approach to solve (6) by calculat-
ing

xðlþ1Þ ¼ �QcþRT bl, ð7Þ

lðlÞ ¼ Rc�Sbl, ð8Þ

where lðlÞ is the Lagrange multiplier, and

Q ¼H�1
�H�1GT

l ðGlH
�1GT

l Þ
�1GlH

�1, ð9Þ

R¼ ðGlH
�1GT

l Þ
�1GlH

�1, ð10Þ

S¼�ðGlH
�1GT

l Þ
�1: ð11Þ

Now the active set method algorithm can be described as:

Step 1: Set l¼0, pick an initial feasible solution xð0Þ, and deter-
mine the initial active constraint index set Ið0Þ.

Step 2: Calculate xðlþ1Þ and lðlÞ from Eqs. (7) and (8).
Step 3: Let dðlÞ ¼ xðlþ1Þ�xðlÞ. If dðlÞ is equal to 0, go to Step 4;

otherwise, go to Step 5.
Step 4: If lðlÞZ0, xðlþ1Þ is the optimal solution, terminate the

iteration; otherwise, find the least entry in lðlÞ and then
remove the corresponding constraint in IðlÞ to form a
new active constraint index set Iðlþ1Þ; let xðlþ1Þ ¼ xðlÞ,
then go to Step 2.
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Step 5: Search the optimal step size al along search direction
dðlÞ, and let xðlþ1Þ ¼ xðlÞ þald

ðlÞ; find the current active
constraint index set Iðlþ1Þ, then go to Step 2.

Note that the initial feasible solution xð0Þ can be obtained by
solving a Linear Programming (LP) problem. See Fletcher (1970)
for details.
Fig. 2. Scheme of MPC implementation on FPGA.
3. MPC design

In this section, an integrated hardware and software design
method is developed to implement the MPC algorithm on a FPGA
chip. The basic structure of MPC system is reviewed, then the
technical details of hardware and software implementation on
FPGA to achieve the design objective of high efficiency and
flexibility are discussed.
Fig. 3. Pipeline structure of vector multiplier.
3.1. Structure of MPC control system

A typical MPC system has the following components as shown
in Fig. 1:

Data acquisition: Collect the output data from the plant.
Pre-processing: Prepare the data to feed into the optimization

solver.
Optimization: Solve the online optimization problem (5).
Post-processing: Retrieve the control signal from the optimal

solution.
Actuation: Apply the control to the plant.
Among these functional blocks, the hardware realization of

data acquisition, pre-processing, post-processing, and actuation
may vary depending on the specific application. In some applica-
tions, additional blocks may be required, e.g., state observer in
output feedback systems.

Moreover, a flexible MPC design is needed to enable easy
customization to different applications. To satisfy these demands,
an integrated structure is developed to take full advantage of
FPGA. This structure consists of a QP solver that can significantly
shorten the computational time, and a microprocessor with
embedded software that controls the work flow and provides an
interface to adjust parameters of the MPC controller if necessary.
With this integrated structure, only the software part needs to be
modified to meet the requirements of different control tasks and
environments, thus the workload for redesigning and deploying
the controller to various fields is greatly reduced.

The scheme of MPC implementation on FPGA is shown in
Fig. 2. For the hardware part, an ECQP solver that calculates the
optimal solution and Lagrange multiplier of (7)–(11) at each
sampling instant is carefully designed to cooperate with
embedded software to construct the QP solver. The FPGA micro-
processor runs the embedded software, whereas the memory
controllers connect external memory chips. All the components
are connected via FPGA internal bus. Furthermore, the QP solver
should be able to handle different problem sizes so as to make the
design flexible.
Fig. 1. Block diagram of MPC system.
The software part is used to determine the stop criterion,
update the active constraint index set, and control the optimiza-
tion flow. The control parameters are stored in a dedicated
storage, so they can be changed on-the-fly.

3.2. QP solver design

This subsection presents the QP solver that is implemented by
the logic resources of FPGA. This is one of the major contributions
of the current paper.

The main calculations in Eqs. (7)–(11) are matrix operations at
a prescribed dimension. Due to the physical characteristics of
FPGA, matrix inversion, which consists of divisions and branch
operations, are resource-expensive, so it is carried out by software
to balance performance and resource utilization (Xilinx, 2008).
Since H�1 is a constant matrix and can be computed off-line, only
the inverse of the matrix GlH

�1GT
l in Eqs. (9)–(11) needs to be

calculated in real time.
For other matrix operations, hardware matrix multiplier and

adder are designed to improve efficiency. Following the guideline
of matrix multiplier design in Dou, Vassiliadis, Kuzmanov, and
Gaydadjiev (2005), FPGA built-in floating point (FLP) components
are used to calculate each entry in the product matrix by using a
vector multiplier to calculate inner product of corresponding row
and column, as shown in Fig. 3. Here, in order to simplify the
matrix division in Dou et al. (2005) and then reduce the resource
utilization, which is important to make the design easy to be
applied to various applications, the vector inner product is chosen
as the basic operation in the design.

As shown in Fig. 3, this vector multiplier reads two vectors in
an element-by-element fashion, then process the data with four
stages: FLP multiply, FLP to fixed point (FXP) conversion, FXP
accumulation, and FXP to FLP conversion. FXP numbers are used
here to increase the throughput of vector multiplier, since FLP
accumulation is hard to be accomplished within one clock cycle.
All input FLP data are pre-scaled to an appropriate range to avoid
data overflow and underflow. All of these stages have a through-
put of one floating point operation per cycle, which means they
can accept new data at every clock cycle, even if the result of
previous data is not ready yet. This structure thus can fully exploit
the computing power of each component. By this pipelined
structure, the vector multiplier takes only one clock cycle per
floating point multiplication and accumulation in average.



Table 2
Execution sequence of ECQP solver.

# Data transfer Multi. Add/sub Complexity

1 In: H�1, G O ðn2Þ

2 In: c T ¼ G� H�1 O ðn3Þ

3 In: b PT
¼G� TT O ðn3Þ

4 P�1 (by software) O ðn3Þ

5 R¼ P�1
� T O ðn3Þ

6 K ¼ TT
� R O ðn3Þ

7 mT ¼ cT � RT Q ¼H�1
�K O ðn2Þ

8 n¼ P�1
� b O ðn2Þ

9 oT ¼ bT
� R l¼mþn O ðn2Þ

10 Out: l pT ¼�cT � QT O ðn2Þ

11 x¼ oþp O (n)

12 Out: x O (n)

Table 3
Computing time comparison (unit: clock cycle).

Scale ECQP solver Single multiplier & adder

Calc. Trans. Total Calc. Trans. Total

5�5 738 597 1335 722 3081 3803

10�10 4638 2305 6943 4596 11 338 15 934

15�15 14 772 5258 20 030 14 674 14 777 39 451
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A special Direct Memory Access (DMA) block is designed to
guarantee correct data are delivered and calculated in every cycle
by visiting each row or column of a matrix in a predefined order.
It can fetch matrix data in either normal or transposed form to
avoid unnecessary transpositions. The result is stored to local
memory at the end of each vector multiplication. This design is
suitable for matrix multiplication with arbitrary dimensions. The
computational complexity is approximately n3 cycles, where n is
matrix dimension.

In a similar structure, a matrix adder is designed to use a FLP
adder to perform addition and subtraction with computational
complexity at n2. In these modules, IEEE-754 compliant single
floating point precision is adopted to avoid numerical unstable
issues and improve compatibility.

Besides matrix operations, the data transfer between micro-
processor and QP solver via data bus is also time-consuming. An
experimental investigation of a single matrix multiplication with
data transfer is shown in Table 1. The results from pure software
approach are listed for comparison. It is clear that a considerable
amount of time is wasted on the data transfer, which is something
that should certainly be avoided.

The basic structure of ECQP solver is shown in Fig. 4. From Eqs.
(7)–(11), it can be observed that other than input variables fH�1,
G, c, bg and output variables fx, lg, all the other variables are
temporary and can be stored locally instead of being transferred
back and forth. In the proposed design, the ECQP solver contains
one matrix multiplier and one adder, and they can be executed in
parallel. Then, the computing procedure of Eqs. (7)–(11) is divided
into 12 steps as listed in Table 2. Each step has at most one
multiplication and one addition/subtraction, so they can be
calculated at the same time.

In the computation process, there are 16 temporary variables
to be stored in the ECQP solver, among which eight of them are
matrices and the others are vectors. Each variable needs to have a
unique internal address to avoid access conflict. Here, on-chip
block RAMs are combined into a large memory region as the local
memory to store these variables. Each memory region has two
data ports that can be accessed independently. The ECQP solver
Table 1
Calculation and data transfer time breakdown. Unit: clock cycle.

Matrix dim Calc. Data trans. HW total SW total

5�5 141 413 554 2512

10�10 1021 1652 2673 20 543

15�15 3401 3715 7116 68 033

Fig. 4. Structure of ECQP solver.
uses four memory regions to store all these 16 variables, and two
of them are connected to FPGA internal data bus for data transfer
of input/output variables. In addition, a multiplexer array is used
to make other data ports accessible by the adder and multiplier. It
is controlled by the DMA block for internal data delivery.

Note that additional multipliers and adders can be used to
combine several steps in Table 2 to reduce the amount of data
transfer and further improve the computational efficiency.

Table 3 shows the time needed by the ECQP solver to compute
Eqs. (7)–(11). The time for calculation and data transfer are listed
separately. A single multiplier and adder approach without local
memories is also shown on the right side of Table 3 for compar-
ison. The result shows clearly that the ECQP solver improves the
efficiency significantly by reducing data transfers.

3.3. Hardware implementation on Xilinx Virtex-4 FPGA

In this subsection, a prototype system is built to implement
the MPC design on a Xilinx ML403 development board. A picture
of this experimental system is shown in Fig. 5. As an embedded
platform, it matches well with the tight budget requirements set
by the field controllers.

This platform has a Virtex-4 series FPGA chip with a hard core
PowerPC 405 microprocessor. The PowerPC processor runs at a
frequency of 200 MHz and other components at 100 MHz. The
hardware ECQP solver is coded in Verilog HDL, and one ECQP
solver module is instantiated in the implementation. Combined
with other hardware modules provided by Xilinx, the whole
hardware circuit design is downloaded into the FPGA.

Logic resource utilization is an important factor in FPGA
implementation. Generally, FPGA chip provides four kinds of logic
resources: Flip-flop (FF), Look-up table (LUT), DSP48, and Block
RAM. FF is a distributed storage element that can store 1-bit
information, and several FFs can be combined as registers or
buffers to store digital data. LUT is a 4-input and 1-output logic
block, whose input–output relation is defined by its truth table.
Single LUT can be configured as basic logic gates, while large
numbers of LUTs can be used to form complex logic. DSP48 is a



Fig. 5. MPC implementation on ML403 development board.

Table 4
Resource utilization ratio.

Flip-flop Look-up table DSP48 RAM block

7223/10944 (66%) 9084/10944 (83%) 13/32 (40%) 33/36 (91%)

Fig. 6. Experimental platform for motor rotating angle tracking system.

Fig. 7. Block diagram of the angle servo control system.
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dedicated digital signal processing unit, which contains an 18-bit
integer multiplier and a 48-bit accumulator. Several DSP48 can be
combined to perform floating point arithmetic. Block RAM is an
on-chip memory with 18 kb capacity, which is often used to
store large block of data such as floating point matrices. These
resources build up the ECQP solver that solves the optimization
problem in the MPC algorithm.

Table 4 shows the logic resource utilization of the proposed
design. Flip-flop, Look-up table, and DSP 48 are moderately used,
but RAM block is almost exhausted in storing intermediate data.
This limitation restricts the dimension of H and other variables in
Eqs. (7)–(11) be smaller than 32, which is dependent on the
provided resource by the FPGA chip.

The proposed integrated design is particularly flexible because
the hardware part does not need any additional design or
configuration when deploying to new applications. What an
application engineer has to do is to change some parameters in
the embedded software. This integrated structure makes this
design especially practical and it can be readily deployed to field
control applications.
Fig. 8. Steady rotating speed and driving voltage characteristics for slave motor.
4. Application to an angle servo system

This integrated software and hardware design of the MPC
algorithm can be applied to many industrial processes. In this
section, the proposed FPGA based MPC design is applied to an
angle servo control system to demonstrate its high performance
and efficacy. The motion control system is chosen because it has
high requirements on online computing efficiency.

The angle servo system under study is shown in Fig. 6. There
are two DC motors: the right one is master and the left one is
slave, and two needles indicating their rotating angles. The
control objective is to drive the slave motor to track the master
motor’s rotation, whereas the angular speed of the master motor
is unknown and unmeasurable to the controller. Fig. 7 shows the
block diagram of the angle servo control system. Driving voltages
of the two motors drive them to a certain rotation speed. Angle
difference is the angle between the pointing directions of master
and slave motors’ needles. For this servo system, the control input
is the driving voltage of the slave motor, and the output is the
angle difference between the two needles, which is the only
feedback signal. This system can be used to emulate many
practical systems such as a radar tracking system.
4.1. System modeling and controller design

To simplify the design, the slave motor can be modeled as an
inertial system:

_y
_o

 !
¼

0 1

0 �1=ts

 !
y
o

� �
þ

0

as=ts

 !
u, ð12Þ

where y is the angle of the rotor, o is the angular speed, u is the
driving voltage, ts is the time constant of the motor, and as is the
steady speed factor.

From the motor specifications, the motor parameters can be
obtained as as ¼ 0:59 r=s V and ts ¼ 9 ms. The relation between
the steady rotating speed and driving voltage of the slave motor is
depicted in Fig. 8. The physical characteristics of the motor
restricts the driving voltage to the range ½u,u�, where u ¼ 8 V
and u ¼�5 V. The master motor’s characteristics are slightly
different from the slave motor, and this information is unknown
to the controller and cannot be used in the design process, so it is
assumed that tm ¼ ts and am ¼ as in the modeling process and
rely on MPC’s robustness against model mismatch.
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The servo tracking system has a differential synchro to
measure the angle difference between two needles. The differ-
ential synchro introduces a high frequency sinusoidal stimulus
signal on one motor’s coil and measures the envelope curve of
stimulated signal on the other motor’s coil to determine the angle
difference. This physical nature makes that some noise exists on
the output signal of the differential synchro due to the stimulated
signal. Fig. 9 plots the induced noise when Dy¼ 301. A low-pass
filter is used to attenuate this noise.

As the tracking problem is considered, the desired operation
point of the slave motor is obviously the current angle ym and
angular speed om of the master motor. Denote the operating
voltage of the slave motor corresponding to the desired operation
point as ûm and let the system state be Dy¼ ym�ys and
Do¼om�os. The predictive model of MPC controller is shown
as follows:

D _y
D _o

 !
¼

0 1

0 �1=ts

 !
Dy
Do

� �
þ

0

as=ts

 !
ðûm�usÞ: ð13Þ

In Eq. (13), ûm and Do cannot be measured directly. The
estimation of them will be discussed in the later part.

Setting the sampling period T¼4 ms and discretizing the plant
(13), one can obtain that

xðkþ1Þ ¼
1 0:004

0 0:58

� �
xðkÞþ

0

0:255

� �
DuðkÞ, ð14Þ

where DuðkÞ ¼ ûmðkÞ�usðkÞ is the control input, xðkÞ ¼ ½DyðkÞ,
DoðkÞ�T is the state vector. Furthermore, DoðkÞ can be approxi-
mated by the Backward Euler method:

DoðkÞ ¼ ðDyðkÞ�Dyðk�1ÞÞ=T: ð15Þ

Now the MPC optimization problem is given by

min
UðkÞ

J¼
1

2
UðkÞT HUðkÞþxðkÞT FT UðkÞ

subject to ûmðkþ iÞ�uruðkþ iÞr ûmðkþ iÞ�u,

i¼ 0, . . . ,m�1, ð16Þ

where H and F can be calculated from the model (14) and
weighting matrices Pf, Qi, and Ri.

Since the tracking problem is considered here, the control
horizon and predictive horizon are normally chosen to be small.
In this experiment, the control horizon m is chosen to be equal to
3 to simplify the online computation, and the optimization
horizon p is equal to 10 for better performance. Because Dy is
the only measurable output, a heavier weight is put on Dy than on
Do. Furthermore, a terminal cost function 1

2 xT Pf x is adopted in (2)
to improve the performance and ensure closed-loop stability
rather than using terminal set (cf. Mayne, Rawlings, Rao, &
Scokaert, 2000). The matrix Pf is determined by solving a discrete
Riccati equation of system (13). In this experiment, the weighting
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Fig. 9. Induced noise in differential synchro. Dashed line: desired output; solid

line: actual output.
matrices are chosen as

Qi ¼
200 0

0 1

� �
, Ri ¼ 0:08, Pf ¼

4200 22

22 0:33

� �
: ð17Þ

Note that UðkÞ ¼ 0 is an immediate feasible solution for (16), since
there is no constraint on the state variables.

Finally, the driving voltage of the imagined motor ûm needs to
be estimated. Eq. (14) yields

ûmðk�1Þ ¼ ðDoðkÞ�0:58Doðk�1ÞÞ=0:255þusðk�1Þ: ð18Þ

Since the sampling rate is much faster than the change of um, it is
safe to assume that ûmðkÞ � ûmðk�1Þ. To attenuate the noise
effects, a moving average filter is applied to remove the high
frequency noise in ûm:

ûmðkÞ ¼
1

L

XL

i ¼ 1

ûmðk�iÞ: ð19Þ

Notice that a compromise has to be made for the value of L.
A large L leads to smooth signal but the time response will be
slowed down. In this experimental setting, L is chosen as 5.

4.2. Evaluation of control algorithm

Before proceeding to the final experiment, it is necessary to
show that MPC algorithm is indeed more suitable in this applica-
tion. A comparison between MPC and PID is carried out by a
simulation with the motor model discussed earlier. Here, the PID
controller is to calculate the increment of driving voltage of the
slave motor since the considered control problem is a tracking
problem. At time t¼0, the master motor is driven by a 5 V voltage
source. The goal is to drive slave motor’s needle to catch up with
master motor’s needle. As shown in Fig. 10, it is obvious that the
MPC algorithm can drive the slave needle more quickly tracking
the master needle with less transitional angle difference, which
matches the control goal.

4.3. Experimental results

As mentioned earlier, ML403 FPGA development board is used
in this experiment. It is connected to an A/D converter to get the
sampled angle difference Dy, and to a D/A converter with driving
circuit to actuate the slave motor. The driving voltage of the
master motor is set manually.

In this experiment, it takes the hardware ECQP solver 0.02 ms
to calculate Eqs. (7)–(11) one time. Since the ECQP problem of
MPC controller is a 3�3 problem, this result verifies Table 3 by
considering the additional initial time and the bus frequency
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100 MHz. As a comparison, the software solver needs 0.4 ms to
accomplish the same task. It is clear that the ECQP solver can
enormously shorten the computing time of MPC.

The control performance is satisfying. In Fig. 11, it is shown
that when the driving voltage of master motor is set at 5 V
(amounting to about 120 rounds/min), MPC controller manages to
maintain the angle difference within 70:03 rad (or equivalently,
71:721). Fig. 12 shows that when the driving voltage of master
motor has a steep change from 0 to 5 V, the control signal of MPC
controller first hits the upper bound and then promptly get out of
the constraint boundary. The total regulation time is less than
0.5 s. Note that the driving voltages for two motors are different
due to the different mechanical parameters.
5. Conclusions

This paper focused on extending widely used MPC algorithm
to field controllers so as to deal with constraints effectively. An
integrated design of both hardware and software was developed
to implement MPC on FPGA platforms, which achieves the goal of
providing embedded yet computational efficient control devices
as required by most field control applications. A QP solver based
on embedded chips has been developed to facilitate the optimiza-
tion procedure in the MPC algorithm. This QP solver is platform
independent, and it can find a satisfactory solution much faster
than traditional approaches. Moreover, the fundamental design
guideline is universal so that it can be easily customized to other
applications. This design can be ported to ASIC due to the
similarity between their design flows, which leads to further
single-chip cost reduction and performance improvements.

A prototype experimental system was built to demonstrate the
feasibility and effectiveness of the proposed design. The prototype
system has been further applied to a motor servo tracking system
and achieved good control performance. The proposed design
thus can provide a portal to extend MPC algorithms to many
industrial applications of field control. It also strikes a good
balance between cost and performance, which makes it particu-
larly appealing to field control where a large number of
embedded yet capable controllers are required.

It is worth pointing out that depending on specific application,
sophisticated chips with more resources can be used if budget
permits. With more multipliers and adders under disposal, some
steps in Table 2 can be combined to form a more efficient
execution sequence. This will further reduce the computational
time of the MPC algorithm and makes it applicable to those field
controls mandating fast responses.
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Bartlett, R. A., Wächter, A., & Biegler, L. T. (2000). Active set vs. interior point
strategies for model predictive control. In American control conference (pp.
4229–4233). IEEE.

Bemporad, A. (2006). Model predictive control design: New trends and tools. In
45th IEEE conference on decision and control (pp. 6678–6683). IEEE.

Bleris, L., Vouzis, P., Arnold, M., & Kothare, M. (2006). A co-processor fpga platform
for the implementation of real-time model predictive control. In American
control conference (pp. 1912–1917). IEEE.

Chen, B. L. (2005). Optimization theory and algorithms. China: Tsinghua University
Press.

Dou, Y., Vassiliadis, S., Kuzmanov, G., & Gaydadjiev, G. (2005). 64-bit floating-point
fpga matrix multiplication. In Proceedings of the ACM/SIGDA13th international
symposium on field-programmable gate arrays (pp. 86–95). ACM.

Fletcher, R. (1970). Calculation of feasible points for linearly constrained optimization
problems. OSTI Identifier, OSTI ID: 4485671. Report Number(s), AERE-R 6354.

He, M., & Ling, K. (2005). Model predictive control on a chip. In International
conference on control and automation (Vol. 1, pp. 528–532). IEEE.

Kuon, I., & Rose, J. (2007). Measuring the gap between fpgas and asics. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(2),
203–215.

Lau, M., Yue, S., Ling, K., & Maciejowski, J. (2009). A comparison of interior point
and active set methods for fpga implementation of model predictive control.
In Proceedings of the European control conference (pp. 156–160).

Ling, K. V., Yue, S. P., & Maciejowski, J. M. (2006). A fpga implementation of model
predictive control. In American control conference (pp. 1930–1935). IEEE.

Mayne, D., Rawlings, J., Rao, C., & Scokaert, P. (2000). Constrained model predictive
control: Stability and optimality. Automatica, 36(6), 789–814.

Monmasson, E., & Cirstea, M. (2007). Fpga design methodology for industrial
control systems—A review. IEEE Transactions on Industrial Electronics, 54(4),
1824–1842.

Morari, M., & Lee, J. (1999). Model predictive control: Past, present and future.
Computers & Chemical Engineering, 23(4–5), 667–682.

Ordys, A., Grimble, M. J., & Ordys, A. W. (2001). Predictive control for industrial
applications. Annual Reviews in Control, 25, 13–24.

Qin, S., & Badgwell, T. (2003). A survey of industrial model predictive control
technology. Control Engineering Practice, 11(7), 733–764.

Rawlings, J. (2000). Tutorial overview of model predictive control. IEEE Control
Systems, 20(3), 38–52.

Tessier, R., & Burleson, W. (2001). Reconfigurable computing for digital signal
processing: A survey. Journal of VLSI Signal Processing, 28(1), 7–27.

Xilinx, I. (2008). Virtex-4 FPGA user guide. Xilinx Inc.


	Model predictive controller design and implementation on FPGA with application to motor servo system
	Introduction
	Background
	MPC algorithm
	Active set method

	MPC design
	Structure of MPC control system
	QP solver design
	Hardware implementation on Xilinx Virtex-4 FPGA

	Application to an angle servo system
	System modeling and controller design
	Evaluation of control algorithm
	Experimental results

	Conclusions
	Acknowledgments
	References




